(ISO/IEC - 27001-2013 Certified)

SUMMER- 19 EXAMINATION

Subject Name:

Model Answer
Subject Code:
22205

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\mathbf{Q} .$ No.	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
1.		Attempt any FIVE of the following :	$5 \times 2=10$ Marks
	(a) Ans.	State two principles of survey. Two principles of surveying are: 1) To work from whole to part. 2) To locate a point at least by two independent processes	2 M (01 Mark) (01 Mark)
	(b) Ans.	Define: (i) offset, (ii) Tie line (i) offset The ground features such as buildings, boundaries, roads, nallas etc, are located with reference to the chain lines. Distances are measured from the chain lines to the objects right or left of chain line. Such distances (lateral measurements) are called "offsets" (ii) Tie line: It is a line joining some fixed points as tie stations on the main chain lines. It enables surveyor to locate the interior details.	2 M (01Mark) (01Mark)
	(c) Ans.	State the meaning of term true bearing. The horizontal angle between the line and true meridian is called a true bearing of the line.	$2 M$ (02 Marks)

Q. No.	Sub Q.N.	Answer	Marking Scheme
1.	(d) Ans.	List any four types of bench marks. Following are the four types of bench mark (a) GTS Bench-Marks (b) Permanent Bench-Marks (c) Arbitrary Bench-Marks (d) Temporary Bench-Marks	(02 Marks) 1/2 mark each
	(e) Ans.		(02 Marks) 1 mark each
	(f) Ans.	List any four component parts of digital planimeter. Components of digital planimeter: i) Digital display ii) Rolling wheel or Rollers iii) Tracing arm iv) Function keys or buttons v) Sliding wheel vi) Magnifying glass	(02 Marks) 1/2 mark each for any four
	(g) Ans.	State any two uses of survey Following are the uses of survey 1) It is basically useful for the measurement of areas. 2) It is useful for other purposes, such as engineering, architectural, commercial, scientific, geographical, exploratory, navigational etc. 3) It is used for making of plans in connection with legal documents. 4) Surveying plays an important role in military operations.	(02 Marks) 1 mark each for any two
2.		Attempt any THREE of the following:	12
	(a) Ans.	List any eight component parts of prismatic compass with their function in brief. Component parts of compass with their function.	(04 Marks)

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Purposes: \\
1. Carrying of B.M to the required survey site. \\
2. At the end of survey works for checking the accuracy of survey. \\
3. To connect the B.M at any intermediate point of the alignment.
\end{tabular} \& \begin{tabular}{l}
1M \\
(Any two)
\end{tabular} \\
\hline \& (d)

Ans. \& \begin{tabular}{l}
Convert the following bearing from WCB to QB:

(i) $325^{\circ} 30^{\prime}$

(ii) $265^{\circ} 15^{\prime}$

(iii) $195^{\circ} 45^{\prime}$

(iv) $60^{\circ} 30^{\prime}$

(i) $325^{\circ} 30^{\prime}$
$$
Q B=360^{\circ}-325^{\circ} 30^{\prime}=N 34^{\circ} 30^{\prime} W
$$

(ii) $265^{\circ} 15^{\prime}$

$\mathrm{QB}=265^{\circ} 15^{\prime}-180^{\circ}=\mathbf{S 8 5}{ }^{\circ} 15^{\prime} \mathrm{W}$

(iii) $195^{\circ} 45^{\prime}$
$$
\mathrm{QB}=195^{\circ} 45^{\prime}-180^{\circ}=\mathrm{S} 15^{\circ} 45^{\prime} \mathrm{W}
$$

(iv) $60^{\circ} 30^{\prime}$
$$
Q B=N 60^{\circ} 30^{\prime} E
$$

 \&

(04 Marks)

1 Mark

for each
\end{tabular}

\hline 3. \& \& Attempt any THREE of the following: \& 12 Marks

\hline \& | (a) |
| :--- |
| Ans. | \& Draw survey map showing Base line,,Tie line and Check line. \& (04 Marks)

\hline 3 \& (b) \& The following are bearing taken on a closed compass traverse: \& 4 M

\hline
\end{tabular}

		Angle C $=131^{\circ} \mathbf{5}^{\prime}$ Angle $D=120^{\circ} 45^{\prime}$ Angle E $=99^{\circ} 15^{\prime}$ $=540^{\circ} \quad----$ OK	01Mark
3	(c) Ans.	List four fundamental axes of dumpy level and show the relationship with neat sketch. There are four fundamental axes of a dumpy level. 1. The vertical axis. 2. The axis of the bubble tube (Level tube). 3. The line of collimation. 4. The axis of the telescope. Desired relations in dumpy level. For a dumpy level in perfect adjustment, the following relations should exist. Side view 1. The axis of the level tube should be perpendicular to the vertical axis. 2. The line of collimation should be parallel to the axis of the bubble (level) tube. 3. Axis of telescope and line of collimation should coincide.	4 M (02 Marks) (01 Mark) (01 Mark)
3	(d) Ans.	State the adjustment of dumpy level on field. Adjustment of dumpy level on field: I. Setting up the level. i. The level fixed on tripod. ii. The legs of tripod stand are well spread so that the level will remain stable on tripod. iii. Bring all the three foot screws in the Centre of their run so that they can be turned clockwise or anticlockwise as required, for Levelling purpose. iv. Adjust the height of the instrument so that the observer can Comfortably see through the telescope and note the readings. v. Fix two legs of tripod and adjust third leg in such a way that the levelling head will become as horizontal as possible by eye judgment. II. Levelling up the level. i. The base of the tripod is already leveled with the help of cross bubble. ii To make accurate adjustment of the level, the longitudinal level is adjusted in the Centre of its run, with the help of three foot screws.	4 M (01 Mark) (01 Mark)

(ISO/IEC - 27001-2013 Certified)

		it does not move. ii. Start the planimeter by pressing on button on key pad of it. Screen will be displayed. iii. Set the scale by pressing scale button on key pad. iv. Mark one starting point on boundary of that area and place the point of magnifier of tracing arm of digital planimeter. v. Press the start button and move tracing arm on boundary of area and end it again at its starting point. Press the end button. vi. The area of given figure is displayed in digital display of digital planimeter.				
Q. 4	d) Ans:	Explain the stepwise procedure of estimating volume of reservoir from any contour map. Reservoirs are made for water supply and for power or irrigation projects. A contour map is very useful to study the possible location of a dam and the volume of water to be confined. All the contours are closed lines within the reservoir area. The areas $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3} \ldots . . \mathrm{A}_{\mathrm{n}}$ between successive contour lines can be determined by a planimeter and if h is the contour interval, the capacity of the reservoir can be estimated by the application of either the trapezoidal or the prismoidal formula. (a) Trapezoidal formula Volume, $V=h\left[\frac{A_{1}+A_{n}}{2}+A_{2}+A_{3}+\ldots+A_{n-1}\right]$ (b) Prismoidal formula Volume, $\begin{aligned} V=\frac{h}{3}\left[A_{1}+A_{n}+\right. & 4\left(A_{2}+A_{4}+\ldots+A_{n-1}\right) \\ & \left.+2\left(A_{3}+A_{5}+\ldots+A_{n-2}\right)\right] \end{aligned}$	4M			
Q. 4	e)	The following consecutive readings were taken with a level and a 4 m levelling staff on continuously slopping ground at a common interval of 30 m : $0.585 \text { on } A, 0.936,1.953,2.846,3.644,3.938,0.962,1.035,1.689,2.534,3.844,0.956 \text {, }$ $1.979,3.016 \text { on B. }$ The elevation of A was 520.450 . Prepare a page of level book and apply usual checks. Use collimation plane method. $\begin{aligned} \text { H.I } & =\text { R.L of B.M } \mathbf{+} \mathbf{B} \cdot \mathbf{S} \text { at station } \mathbf{A} \\ & =520.450+0.585=\mathbf{5 2 1} .035 \end{aligned}$ R.L of station = H.I - I.S of station \backslash F.S of station R.L at station $30=521.035-0.936=\mathbf{5 2 0 . 0 9 9}$ Similarly worked out all the R.Ls.	$4 M$ $1 M$			
		OUR CENTERS: KALYAN \| DOMBIVLI	THANE	NERUL	DADAR Contact - 9136008228	Page 9 of 19

	Station	B.S	I.S	F.S	H.I	R.L	Remark
	A 0	0.585			521.035	520.450	B.M
	30		0.936			520.099	
	60		1.953			519.082	
	90		2.846			518.189	
	120		3.644			517.391	
	150	0.962		3.938	518.059	517.097	C.P1
	180		1.035			517.024	
	210		1.689			516.370	
	240		2.534			515.525	
	270	0.956		3.844	515.171	514.215	C.P2
	310		1.979			513.192	
	B 330			3.016		512.155	
		$\Sigma B . S=2.503$		$\Sigma \mathrm{F} . \mathrm{S}=10.798$			

2M

Arithmetic check-

$\Sigma \mathrm{BS}-\Sigma \mathrm{FS}=\mathrm{RL}$ of Last Point -RL of First Point
$2.503-10.798=512.155-520.450$
$-8.295=-8.295$
OK

Q. 5		Attempt any TWO of the following:	12M
	(a)	Plot the following cross staff survey of a field ABCDEFA and calculate its area. E48. 72 48 $45 \cdot \mathrm{C}$ F36 30	6M

		Station	B.S	I.S	F.S	Rise(+)	Fall(-)	R.L	Remark	4M
		1	2.228					432.384	B.M	
		2		1.606		0.622		433.006		
		3	2.090		0.988	0.618		433.624	C.P 1	
		4		2.864			0.774	432.850		
		5	0.602		1.262	1.602		434.452	C.P 2	
		6	1.044		1.982		1.380	433.072	C.P 3	
		7			2.684		1.640	431.432		
		Arithme EB.S- $\mathrm{FF} . \mathrm{S}$ 5.964-6. - 0.952	$\begin{aligned} & \text { eck }= \\ & \text { ise }-\Sigma \text { F } \\ & 2.842- \\ & 52=-0 \end{aligned}$	Last R.L $4=431$	st R.L -432					1M
Q. 6		Attempt	O	llow						12M
	a) Ans:	List any fo state the m Methods 1. By paral 2. By incl 3. By pape 4. By rect 5. Plotting (1) By Par (Fig.4.20) the magnet The bearing scale, thus Through B scale. The If the trave discrepancy (2) By Inc Fig.4.21) In line AB plo At B the in	ethods g of ad tting \mathbf{c} eridian angle. tractor. ar co-or ngents. Meridia g fixed idian is e line A the pos idian is s is repe a closed ferred to Angles: method nd its le d angle	tting a ment of ass tra ugh ea tes. rough osition of n throu plotted of the s n , the b at each the last he "clos meridian laid off as calcu	pass tra ng erro are: ation. station: starting an ordin B. g of BC on until should rror". awn thr the scale , from	survey raverse. on A suita rotractor off and i lines are the start the startin sfixing t arings of	explain y on the dits leng length m rawn. station point A point B. B and BC	y one in b aper, a line is marked asured off ; if it does d the beari is plotted	f. Also presenting ff with the h the t, the of the ha	6M 2M(Any four) 2M (for any 1 of the method)

protractor and the length of BC is measured off with the scale. The operation is repeated at each of the succeeding stations.

Fig. 4.20

Fig. 4.21

(3) By Paper Protractor:

(Fig.4.22). This method consists of plotting the bearings of all the lines at any point in the centre of the paper with reference to the meridian by using a large circular paper protractor, and then transferring these directions to their proper positions by drawing parallel lines with the help of a parallel ruler.
Having marked the point O in the centre of the paper, draw a line through O to represent the meridian. Place the protractor with the 0 and 180° graduations coinciding with the line. At O plot the bearings of all the lines with reference to the meridian.
Having settled the position of the starting point A , draw a line AB through it parallel to its bearing marked at O with the help of a parallel ruler and measure its length with the scale, thus fixing the point B as in fig.4.23. Proceed similarly until all the lines are drawn. This method is a compass traverse.

Fig. 4.22

Fig. 4.23
(4) By Rectangular Co-ordinates:
(Fig.4.24) In this method each of the points of the traverse is plotted by its co-ordinates with reference to two lines drawn through some Convenient point at right angles to each other.
These lines are known as the axes of co-ordinates and their point of intersection is called the origin of co-ordinates. One of the axes OX called the X-axis represents the north and south line, (true, magnetic or arbitrary) and the other OY known as the Y -axis is a line at right angles there to, and represents the east and west line. Any point may be plotted by measuring with a scale X or Y co-
ordinate along the X or Y axis and laying off the other co-ordinate on the line drawn at right angles at this point. The advantage of this method is that each point is plotted independently with reference to the meridian and the line at right angles to it through a common origin and not with regard to the preceding one. Consequently, if any point is wrongly plotted, the position of any of the succeeding points is not thereby affected.
The errors of plotting cannot, therefore, accumulate. Also the position of each point can be checked by scaling the distance between the point and the preceding one and by comparing it with the length measured in the field.

Fig.

(5) Plotting by Tangents:

In this method the angles between the various lines are plotted by geometrical construction with the help of a table of natural tangents. Having fixed the position of the starting point, a line representing the meridian is drawn through it (always pointing to the top of the paper) as in fig.4.25. To plot the bearing of the first line $A B$, a length $A B I$ of 20 cm is marked off on the meridian the bearing of the line $\mathrm{AB}(\mathrm{cm})$ is then laid off on this perpendicular. The line joining the points A and B 2 determines the direction of the first line $A B$. On this line is scaled off the length of $A B$, thus fixing the position of the point B . The line AB is then produced to C 1 making BC 1 equal to 20 cm . At C 1 a perpendicular is erected and the distance C 1 and C 2 equal 20 X tangent of deflection angle at B (cm) is scaled off on the perpendicular .The line connecting the points B and C 2 gives the direction of the line BC . To mark the point C , the length of BC is marked off with the scale on BC 2 . Other lines are similarly plotted, marked of with the scale on BC 2 . Other lines are similarly plotted. If there is no room for a 20 cm base, a shorter base of 10 cm may be used.

Q. 6	b)	The following figures were extracted from a level field book, some of the readings are missing. Find the missing readings indicated by ' X ' and apply usual checks in level book page given below :								6 A
		Station	BS	IS	FS	Rise	Fall	R.L	Remark	
		1.	2.285					232.460	BM 1	
		2.	1.650		X	0.020				
		3.		2.105			X			
		4.	X		1.960	X				
		5.	2.050		1.925		0.300			
		6.		X		X		232.255	BM 2	
		7.	1.690		X	0.340				
		8.	2.865		2.100		X			
		9.			X	X		233.425	BM 3	
	Ans:	The fore sight of station No. 2 is missing. Difference of station 1 and 2. station 1 is higher than station 2 by 0.020 Hence, missing reading at station $=2.285-0.020=\mathbf{2 . 2 6 5}$ R.L at station $2=232.460+0.020=\mathbf{2 3 2 . 4 8 0}$ Fall at station 3 is missing. It is the difference of staff reading on station 2 and station 3 $=1.650-2.105=0.455$ The rise of station $4=2.105-1.960=0.145$ Similarly, the B.S reading of station 4 is found from the fall of station 5 $=1.925-0.300=1.625$ The RLs of station 1 to 5 can now be worked out as all the readings upto station 5 are available. missing Rise of station $6=232.255-231.870=0.385$ Hence missing IS of station $6=2.050-0.385=1.665$ F.S of station $7=1.665-0.340=1.325$ Fall at station $8=1.690-2.100=\mathbf{0 . 4 1 0}$ The RLs of station 6 to 8 can now be worked out. Hence, Rise at station $9=233.425-232.185=1.240$ Similarly, F.S at station $9=2.865-1.240=1.625$ Thus, all the missing readings are worked out and RLs are calculated. The results are entered in the following table - The readings which were missing are bold :								

